47 research outputs found

    A Near-Optimal Algorithm for Computing Real Roots of Sparse Polynomials

    Full text link
    Let pZ[x]p\in\mathbb{Z}[x] be an arbitrary polynomial of degree nn with kk non-zero integer coefficients of absolute value less than 2τ2^\tau. In this paper, we answer the open question whether the real roots of pp can be computed with a number of arithmetic operations over the rational numbers that is polynomial in the input size of the sparse representation of pp. More precisely, we give a deterministic, complete, and certified algorithm that determines isolating intervals for all real roots of pp with O(k3log(nτ)logn)O(k^3\cdot\log(n\tau)\cdot \log n) many exact arithmetic operations over the rational numbers. When using approximate but certified arithmetic, the bit complexity of our algorithm is bounded by O~(k4nτ)\tilde{O}(k^4\cdot n\tau), where O~()\tilde{O}(\cdot) means that we ignore logarithmic. Hence, for sufficiently sparse polynomials (i.e. k=O(logc(nτ))k=O(\log^c (n\tau)) for a positive constant cc), the bit complexity is O~(nτ)\tilde{O}(n\tau). We also prove that the latter bound is optimal up to logarithmic factors

    On the Complexity of Real Root Isolation

    Full text link
    We introduce a new approach to isolate the real roots of a square-free polynomial F=i=0nAixiF=\sum_{i=0}^n A_i x^i with real coefficients. It is assumed that each coefficient of FF can be approximated to any specified error bound. The presented method is exact, complete and deterministic. Due to its similarities to the Descartes method, we also consider it practical and easy to implement. Compared to previous approaches, our new method achieves a significantly better bit complexity. It is further shown that the hardness of isolating the real roots of FF is exclusively determined by the geometry of the roots and not by the complexity or the size of the coefficients. For the special case where FF has integer coefficients of maximal bitsize τ\tau, our bound on the bit complexity writes as O~(n3τ2)\tilde{O}(n^3\tau^2) which improves the best bounds known for existing practical algorithms by a factor of n=degFn=deg F. The crucial idea underlying the new approach is to run an approximate version of the Descartes method, where, in each subdivision step, we only consider approximations of the intermediate results to a certain precision. We give an upper bound on the maximal precision that is needed for isolating the roots of FF. For integer polynomials, this bound is by a factor nn lower than that of the precision needed when using exact arithmetic explaining the improved bound on the bit complexity

    Computing Real Roots of Real Polynomials

    Full text link
    Computing the roots of a univariate polynomial is a fundamental and long-studied problem of computational algebra with applications in mathematics, engineering, computer science, and the natural sciences. For isolating as well as for approximating all complex roots, the best algorithm known is based on an almost optimal method for approximate polynomial factorization, introduced by Pan in 2002. Pan's factorization algorithm goes back to the splitting circle method from Schoenhage in 1982. The main drawbacks of Pan's method are that it is quite involved and that all roots have to be computed at the same time. For the important special case, where only the real roots have to be computed, much simpler methods are used in practice; however, they considerably lag behind Pan's method with respect to complexity. In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes method and Newton iteration, denoted ANEWDSC, which is simpler than Pan's method, but achieves a run-time comparable to it. Our algorithm computes isolating intervals for the real roots of any real square-free polynomial, given by an oracle that provides arbitrary good approximations of the polynomial's coefficients. ANEWDSC can also be used to only isolate the roots in a given interval and to refine the isolating intervals to an arbitrary small size; it achieves near optimal complexity for the latter task.Comment: to appear in the Journal of Symbolic Computatio

    Counting Solutions of a Polynomial System Locally and Exactly

    Full text link
    We propose a symbolic-numeric algorithm to count the number of solutions of a polynomial system within a local region. More specifically, given a zero-dimensional system f1==fn=0f_1=\cdots=f_n=0, with fiC[x1,,xn]f_i\in\mathbb{C}[x_1,\ldots,x_n], and a polydisc ΔCn\mathbf{\Delta}\subset\mathbb{C}^n, our method aims to certify the existence of kk solutions (counted with multiplicity) within the polydisc. In case of success, it yields the correct result under guarantee. Otherwise, no information is given. However, we show that our algorithm always succeeds if Δ\mathbf{\Delta} is sufficiently small and well-isolating for a kk-fold solution z\mathbf{z} of the system. Our analysis of the algorithm further yields a bound on the size of the polydisc for which our algorithm succeeds under guarantee. This bound depends on local parameters such as the size and multiplicity of z\mathbf{z} as well as the distances between z\mathbf{z} and all other solutions. Efficiency of our method stems from the fact that we reduce the problem of counting the roots in Δ\mathbf{\Delta} of the original system to the problem of solving a truncated system of degree kk. In particular, if the multiplicity kk of z\mathbf{z} is small compared to the total degrees of the polynomials fif_i, our method considerably improves upon known complete and certified methods. For the special case of a bivariate system, we report on an implementation of our algorithm, and show experimentally that our algorithm leads to a significant improvement, when integrated as inclusion predicate into an elimination method

    Computing Real Roots of Real Polynomials ... and now For Real!

    Full text link
    Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton iteration to speed up convergence against clusters of roots, and approximate computation to decrease the required precision. It achieves record bounds on the worst-case complexity for the considered problem, matching the complexity of Pan's method for computing all complex roots and improving upon the complexity of other subdivision methods by several magnitudes. In the article at hand, we report on an implementation of ANewDsc on top of the RS root isolator. RS is a highly efficient realization of the classical Descartes method and currently serves as the default real root solver in Maple. We describe crucial design changes within ANewDsc and RS that led to a high-performance implementation without harming the theoretical complexity of the underlying algorithm. With an excerpt of our extensive collection of benchmarks, available online at http://anewdsc.mpi-inf.mpg.de/, we illustrate that the theoretical gain in performance of ANewDsc over other subdivision methods also transfers into practice. These experiments also show that our new implementation outperforms both RS and mature competitors by magnitudes for notoriously hard instances with clustered roots. For all other instances, we avoid almost any overhead by integrating additional optimizations and heuristics.Comment: Accepted for presentation at the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), July 19--22, 2016, Waterloo, Ontario, Canad

    When Newton meets Descartes: A Simple and Fast Algorithm to Isolate the Real Roots of a Polynomial

    Full text link
    We introduce a new algorithm denoted DSC2 to isolate the real roots of a univariate square-free polynomial f with integer coefficients. The algorithm iteratively subdivides an initial interval which is known to contain all real roots of f. The main novelty of our approach is that we combine Descartes' Rule of Signs and Newton iteration. More precisely, instead of using a fixed subdivision strategy such as bisection in each iteration, a Newton step based on the number of sign variations for an actual interval is considered, and, only if the Newton step fails, we fall back to bisection. Following this approach, our analysis shows that, for most iterations, we can achieve quadratic convergence towards the real roots. In terms of complexity, our method induces a recursion tree of almost optimal size O(nlog(n tau)), where n denotes the degree of the polynomial and tau the bitsize of its coefficients. The latter bound constitutes an improvement by a factor of tau upon all existing subdivision methods for the task of isolating the real roots. In addition, we provide a bit complexity analysis showing that DSC2 needs only \tilde{O}(n^3tau) bit operations to isolate all real roots of f. This matches the best bound known for this fundamental problem. However, in comparison to the much more involved algorithms by Pan and Sch\"onhage (for the task of isolating all complex roots) which achieve the same bit complexity, DSC2 focuses on real root isolation, is very easy to access and easy to implement

    Special Linear Series and Syzygies of Canonical Curves of Genus 9

    Get PDF
    In this thesis we give a complete description of the syzygies of irreducible, nonsingular, canoncial curves CC of genus 9. This includes a collection of all possible Betti tables for CC. Moreover a direct correspondence between these Betti tables and the number and types of special linear series on CC is given. Especially for Cliff(C)=3\operatorname{Cliff}(C)=3 the curve CC is contained in determinantal surface YY on a 4-dimensional rational normal scroll XP8X\subset \mathbb{P}^8 constructed from a base point free pencil of divisors of degree 5.Comment: PhD Thesis, extended versio

    An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks

    Full text link
    We present an exact and complete algorithm to isolate the real solutions of a zero-dimensional bivariate polynomial system. The proposed algorithm constitutes an elimination method which improves upon existing approaches in a number of points. First, the amount of purely symbolic operations is significantly reduced, that is, only resultant computation and square-free factorization is still needed. Second, our algorithm neither assumes generic position of the input system nor demands for any change of the coordinate system. The latter is due to a novel inclusion predicate to certify that a certain region is isolating for a solution. Our implementation exploits graphics hardware to expedite the resultant computation. Furthermore, we integrate a number of filtering techniques to improve the overall performance. Efficiency of the proposed method is proven by a comparison of our implementation with two state-of-the-art implementations, that is, LPG and Maple's isolate. For a series of challenging benchmark instances, experiments show that our implementation outperforms both contestants.Comment: 16 pages with appendix, 1 figure, submitted to ALENEX 201
    corecore